Tetrachlorophthalic Anhydride: a Study of the Carbon-Chlorine Bond

By Reuben Rudman
Chemistry Department, Adelphi University, Garden City, New York 11530, U.S.A. and Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

(Received 29 December 1969)

Abstract

The crystal and molecular structure of tetrachlorophthalic anhydride (TCPA) was determined by single-crystal X-ray diffraction methods. It crystallizes in space group $P 2_{1} / n, a=13.37$ (2), $b=5.760$ (8), $c=12.32$ (2) $\AA, \beta=91.03(10)^{\circ}$ with four molecules per unit cell. Molecular overcrowding causes the chlorine atoms to be distorted 1.0 to 2.6° from the benzene ring plane. The average carbon-chlorine bond distance is $1.709 \AA$. It is suggested that, in aromatic compounds, the $\mathrm{C}-\mathrm{Cl}$ bond distance is significantly shorter for two ortho bonds than for meta, para or isolated bonds.

Introduction

The tetrahalophthalic anhydrides, TXPA $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$, are known to form charge-transfer complexes with a number of polycyclic compounds (Buu-Hoi \& Jacquignon, 1957; Chowdhury \& Basu, 1960; Chowdhury, 1961; Czekalla \& Meyer, 1961; Short, 1968). The TXPA compounds contain no hydrogen atoms and complexes containing these molecules should be free of hydrogen bonds between the molecules constituting the complex, thus permitting a study of the structural effects of complex formation relatively free of other complicating factors. Prior to undertaking a general study of these complexes, it was considered advisable to determine the structure of the uncomplexed TXPA molecules, so that the effects of any complex formation (e.g. distortion from planarity) could be recognized. A preliminary examination of the three TXPA molecules revealed that they crystallize in different space groups. It is quite possible that the effects of molecular overcrowding become progressively more severe as the size of the halogen atom increases. The question of molecular overcrowding has been studied by a number of investigators (Bastiansen \& Hassel, 1947; Coulson \& Stocker, 1959; Ferguson \& Sim, 1961; Strel'cova \& Struchkov, 1961; Gafner \& Herbstein, 1962).

However, few systematic investigations of related compounds using X-ray diffraction techniques have been reported. The study of TCPA was undertaken as the initial step in the investigation of the tetrahalophthalic anhydrides and their charge-transfer complexes.

Crystal data

Crystals of TCPA were prepared in three ways: crystallization from benzene, crystallization from nitrobenzene, and sublimation. In the latter case, a sample of TCPA, in an evacuated ($10^{-3} \mathrm{~mm}$) glass tube was placed in a tube furnace set at 100°; crystals grew at the end of the tube extending from the furnace. Subsequent analysis of crystals from all three sources
showed that they formed the same crystalline modification.

Crystal data are found in Table 1. McCrone (1951) determined the unit-cell dimensions of TCPA. These values, as reported by Donnay \& Donnay (1963) ($a=13.45, b=5.834, c=12.34 \AA, \beta=90.97^{\circ}$) are in satisfactory agreement with those reported here, which were refined with powder data.

Table 1. Crystal data

Name:	Tetrachlorophthalic anhydride, $\mathrm{C}_{8} \mathrm{Cl}_{4} \mathrm{O}_{3}$
Formula weight:	285.90 (based on ${ }^{12} \mathrm{C}$)
Crystal system:	monoclinic
Systematic absences:	0k0, k odd; $h 0 l, h+l$ odd
Space group:	$\begin{aligned} & P 2_{1} / n\left(\text { No. } 14, C_{2 h}^{5}\right) \\ & a=13.37(2), \\ & b=5.760(8), \\ & c=12.32(2) \AA \\ & \beta=91.03(10)^{\circ} \end{aligned}$
Unit-cell volume:	$\begin{aligned} & 948 \cdot 9 \AA^{3}, \\ & Z=4 \end{aligned}$
Density:	
X-ray	$2.00{ }_{1} \mathrm{g.cm}^{-3}$
Experimental	$1.970 \mathrm{g.cm}^{-3}$ (McCrone, 1951)

Needle-shaped crystals growing along the b direction were used for collecting data at room temperature $\left(24^{\circ} \pm 2\right)$. Integrated Weissenberg photographs using the multiple-film technique were taken of layers $h K l$, $K=0-3$. Each exposure was taken for 170 hours using Ni -filtered $\mathrm{Cu} K \alpha$ radiation. Three layers ($h k 0$, $h k 1,0 k l)$ of non-integrated, timed precession photographs were taken for scaling purposes with Zr -filtered Mo $K \alpha$ radiation. A total of 628 reflections (548 Weissenberg and 80 precession) were used in the refinement of the structure.

The absorption coefficients calculated for TCPA are: $\mu_{\mathrm{Cu}}=112$ and $\mu_{\mathrm{Mo}}=12$. A nearly cylindrical crystal of dimensions 0.3 mm length by 0.04 mm diameter ($\mu R=$ $0 \cdot 2$) was selected for use on the Weissenberg goniometer. The precession data were collected from another cylindrical crystal with dimensions 0.9 by 0.15 mm

Fig. 1. Electron density map of the TCPA molecule through the weighted least-squares plane, $6.424 x-3.415 y-8.070 z=$ $4 \cdot 178$. The deviation of each atom from the plane is shown in the Figure; the e.s.d. of this deviation is shown as a subscript (all values are $\times 10^{3}$). The heights of the chlorinc atoms in the regular electron density map are 17-19 e. \AA^{-3}, those of the oxygen atoms are 7-8 e. \AA^{-3} and for carbon they are 6-7 e. \AA^{-3}. Some of the peak heights in this Figure are misleading because of the deviations of the atoms from the plane through which the map was drawn.
($\mu R=0 \cdot 1$). The effect of absorption on the relative intensities is as follows: As a function of θ, less than 2%; as a function of the variation of crystal diameter, less than 4%. No absorption corrections were applied. Relative intensities, measured on a Nonius microdensitometer, were scaled and converted to F^{2} by the application of the proper Lp factor. Standard crystallographic programs, modified for use on the Brookhaven computer, were used in the solution and refinement of this structure.

Solution and refinement

The following general position coordinates were used: $\pm\left(x, y, z ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right)$. The structure was solved and refinement carried out using the form factor for $\mathrm{Cl}, \mathrm{O}, \mathrm{C}$ which will appear in Volume IV of International Tables for X-ray Crystallography and Cromer's (1965) anomalous dispersion corrections for chlorine.

An estimated absolute scale factor and mean isotropic temperature factor were determined from a Wilson plot and the crystal structure was solved using the symbolic addition method of direct determination of phases (Karle \& Karle, 1966). Three signs and two symbols were selected. From a total of $254 E$ factors

Table 2. Atomic coordinates and anisotropic temperature factors of TCPA
The β values are used in the expression

$$
\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+I^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right] .
$$

All positional and thermal parameters have been multiplied by 10^{5}; e.s.d.'s are in parentheses.
(a) Positional parameters

	x	y	z
	x	y	z
$\mathrm{Cl}(1)$	$12130(30)$	$9039(58)$	$57226(32)$
$\mathrm{Cl}(2)$	$32459(28)$	$18753(63)$	$69349(28)$
$\mathrm{Cl}(3)$	$45156(30)$	$60770(59)$	$62939(31)$
$\mathrm{Cl}(4)$	$38874(29)$	$91638(60)$	$43138(33)$
$\mathrm{O}(1)$	$8613(82)$	$65802(202)$	$31018(72)$
$\mathrm{O}(2)$	$314(73)$	$35202(177)$	$38179(85)$
$\mathrm{O}(3)$	$19458(82)$	$93525(204)$	$27940(92)$
$\mathrm{C}(1)$	$16732(108)$	$46246(256)$	$45475(117)$
$\mathrm{C}(2)$	$19549(9)$	$31238(230)$	$53622(103)$
$\mathrm{C}(3)$	$28588(102)$	$36361(252)$	$58991(98)$
$\mathrm{C}(4)$	$34442(95)$	$54773(262)$	$55825(113)$
$\mathrm{C}(5)$	$31705(97)$	$70061(232)$	$47405(103)$
$\mathrm{C}(6)$	$22653(100)$	$64755(278)$	$42314(107)$
$\mathrm{C}(7)$	$17520(137)$	$78210(378)$	$33629(145)$
$\mathrm{C}(8)$	$7653(129)$	$47697(349)$	$38270(139)$

(b) Thermal paramete,s

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Cl}(1)$	$540(30)$	$3253(263)$	$682(37)$	$-372(72)$	$63(27)$	$116(72)$
$\mathrm{Cl}(2)$	$570(34)$	$3803(264)$	$378(32)$	$28(61)$	$-135(25)$	$311(62)$
$\mathrm{Cl}(3)$	$386(29)$	$5231(277)$	$558(33)$	$-148(69)$	$-221(26)$	$-44(72)$
$\mathrm{Cl}(4)$	$423(28)$	$3626(264)$	$762(38)$	$-453(72)$	$36(27)$	$316(74)$
$\mathrm{O}(1)$	$533(88)$	$5445(601)$	$230(72)$	$270(185)$	$-64(63)$	$729(178)$
$\mathrm{O}(2)$	$207(70)$	$5282(562)$	$864(104)$	$-178(176)$	$-176(75)$	$-288(184)$
$\mathrm{O}(3)$	$427(89)$	$5336(705)$	$611(96)$	$122(188)$	$89(72)$	$902(210)$
$\mathrm{C}(1)$	$281(108)$	$2082(756)$	$452(132)$	$-88(243)$	$-31(99)$	$-178(263)$
$\mathrm{C}(2)$	$233(100)$	$2128(713)$	$344(117)$	$-169(239)$	$36(91)$	$199(234)$
$\mathrm{C}(3)$	$273(95)$	$3446(752)$	$178(91)$	$141(248)$	$-115(79)$	$-8(253)$
$\mathrm{C}(4)$	$111(100)$	$2984(746)$	$618(148)$	$21(225)$	$24(96)$	$-388(282)$
$\mathrm{C}(5)$	$219(105)$	$2593(748)$	$289(110)$	$314(252)$	$35(89)$	$332(246)$
$\mathrm{C}(6)$	$209(103)$	$3517(858)$	$252(105)$	$421(280)$	$56(84)$	$-2(267)$
$\mathrm{C}(7)$	$322(135)$	$4775(1184)$	$669(181)$	$-67(322)$	$101(127)$	$-143(352)$
$\mathrm{C}(8)$	$334(119)$	$5967(1107)$	$407(128)$	$-202(307)$	$80(105)$	$-1181(317)$

greater than $1 \cdot 0$, phases for 247 reflections were determined after four passes through SORTE (Okaya \& Bednowitz, 1967). All 15 atoms of the asymmetric unit were visible on the E map obtained using these phases.

Refinement continued through various stages, until the final refinement was carried out with a full-matrix least-squares calculation using 143 variables. These included 7 scale factors, three positional and six thermal parameters for each of the fifteen atoms, and an isotropic extinction factor as suggested by Zachariasen (1968) and as treated by Coppens \& Hamilton (1970). The discrepancy factors,
and

$$
\begin{aligned}
& R=\sum\left|F_{o}-F_{c}\right| / \sum\left|F_{o}\right| \\
& R^{\prime}=\left[\sum w| | F_{o}\left|-\left|F_{c}\right|\right|^{2} / \sum w\left|F_{u}\right|^{2}\right]^{1 / 2},
\end{aligned}
$$

before and after the extinction correction are:

	Before	After
R	0.090	0.055
R^{\prime}	0.097	0.054

The weighting scheme employed in the least-squares program used $\sigma^{2}=(0 \cdot 08 F)^{2}+(20 F / I)^{2}$, where F is the observed structure factor and I the observed intensity. Final positional and thermal parameters are found in

Table 3. Observed and calculated structure factors $(\times 10)$
Reflections marked with a dot were obtained from precession photographs.
к.

 $\mathfrak{M r o s}$

 -awnolisunawowr

志

 ".

Table 2; the calculated and observed structure factors are in Table 3.

The final isotropic extinction parameter corresponds to a mosaic spread of approximately 2.67 sec or a spherical domain radius of 3.36 microns depending upon whether a Zachariasen (1968) type I or type II description is chosen. The calculated structure factors have been multiplied by the extinction correction

$$
E=\left[1+\frac{2 \bar{T} F_{\mathrm{calc}}^{2} g \lambda^{3}}{V^{2} \sin 2 \theta^{-}}\right]^{-1 / 4}
$$

where $F_{\text {calc }}^{2}$ is on an absolute scale, λ is in \AA, the cell volume, V, is in $\AA^{3}, \bar{T}=0.005 \mathrm{~cm}$ is the average path length in the crystal and g (the refined extinction parameter) has the value 2.18×10^{4}. The extinction parameter corrected for deviations between $F_{\text {obs }}$ and $F_{\text {calc }}$ as extreme as $F_{\text {obs }} / F_{\text {calc }}=0.37$.

The equation of the weighted least-squares plane through the plane of the molecule is:

$$
6 \cdot 424 x-3 \cdot 415 y-8 \cdot 070 z=4 \cdot 178
$$

where x, y and z are the fractional coordinates in the monoclinic cell. The electron density map of this plane is shown in Fig. 1; the deviation of each atom from the least-squares plane is indicated in the diagram. The highest electron density in the difference electron density ($F_{\text {obs }}-F_{\text {calc }}$) map was $0.37 \mathrm{e} . \AA^{-3}$, about 6% of the height of a benzene ring carbon atom in this structure.

Thermal 'riding' correction

The chlorine and carbonyl oxygen atoms are vibrating anisotropically with a maximum root-mean-square amplitude of vibration of about 9° for chlorine and 16° for oxygen. Bond corrections for these motions have been calculated assuming that the chlorine and carbonyl oxygen atoms 'ride' on the carbon atoms to which they are attached (Busing \& Levy, 1964). The corrected bond lengths are used in the following discussion and are listed in Table 4.

Table 4. Selected interatomic distances in TCPA
All distances are in ångstroms, with the e.s.d. in parentheses.
(a) Intramolecular distances
(i)Bond lengths corrected for thermal motion (uncorrected values are in Fig. 2)

$\mathrm{Cl}(1)-\mathrm{C}(2)$	$1.700(13)$
$\mathrm{Cl}(2)-\mathrm{C}(3)$	$1.717(13)$
$\mathrm{Cl}(3)-\mathrm{C}(4)$	$1.718(13)$
$\mathrm{Cl}(4)-\mathrm{C}(5)$	$1.684(13)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.177(17)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.227(17)$

(ii) Non-bonded intramolecular distances
No 'riding'

correction \quad| 'Riding' |
| :---: |
| correction |

Table 4 (cont.)
(b) Intermolecular distances
(i) Adjacent molecules related by center of symmetry

$\mathrm{Cl}(1) \cdots \mathrm{O}(2)$	$3 \cdot 101(11)$
$\mathrm{Cl}(3) \cdots \mathrm{Cl}(4)$	$3 \cdot 563(5)$

(ii) Distance between parallel molecular planes* 3.451 (14)
(iii) Adjacent molecules (a) x, y, z and (b) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$

a	b
$\mathrm{O}(3) \cdots \mathrm{C}(7)$	$3.024(18)$
$\mathrm{O}(3) \cdots \mathrm{C}(6)$	$2.989(17)$

* $\mathrm{Cl}(1)$ is nearly directly over $\mathrm{C}(6)$ of the molecule parallel to it; the vector drawn between these two atoms forms an angle of 87.3° with the molecular plane containing $\mathrm{C}(6)$.

Planarity of the molecule

A number of other molecules containing polyhalogenated benzene rings have been studied in an attempt to determine whether or not molecular overcrowding can distort molecules that should otherwise be planar (e.g. Gafner \& Herbstein, 1962). In the absence of steric distortions, all the atoms in a molecule of TCPA should lie on the same plane. The present data (Fig. 1) show that molecular overcrowding in TCPA does cause a small, but significant, deviation from planarity.

No distortion is noted in the benzene ring, nor is there any significant bending of the molecule along the $\mathrm{C}(1)-\mathrm{C}(6)$ axis (the angle between the two planes defined by $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4)$ and by $\mathrm{O}(1), \mathrm{C}(7), \mathrm{C}(8)$ is $2 \cdot 0^{\circ}$ with an e.s.d. of $1 \cdot 3^{\circ}$). However, most of the atoms not in the benzene ring are not located on the weighted least-squares plane. The relative displacements of the $\mathrm{Cl}(1), \mathrm{C}(8)$ and $\mathrm{Cl}(4), \mathrm{C}(7)$ pairs of atoms agree with those observed in o-chlorobenzoic acid (Ferguson \& Sim, 1961).

The data for the chlorine atoms correspond to a bending from the plane of between 1.0 and $2 \cdot 6^{\circ}$, with a puckered effect observed over the molecule. The two outer atoms, $\mathrm{Cl}(1)$ and $\mathrm{Cl}(4)$, are bent away from the adjacent chlorine atoms toward the oxygen atoms which also appear to maintain this puckered effect.

The relatively small displacements of the chlorine atoms from the molecular plane are consistent with the observations of a number of other investigators: Sakurai and co-workers (Dean, Richardson \& Sakurai, 1961 ; Sakurai, 1962b) found the out-of-plane bending of a number of tetrachlorobenzene derivatives to be of the order of 1°. Morino, Toyama, Itoh \& Kyono (1962) reported in a footnote that a re-evaluation of hexachlorobenzene by Bastiansen (private communication to them) showed it to be planar, in contradiction with the earlier work of Bastiansen \& Hassel (1947) which indicated a deviation of 12°. Finally, Daševskij, Avoyan \& Davydova (1966), calculated that the energy minima in ortho tetrahalogenated benzene compounds correspond to the planar configurations. This calculation is compatible with the experimental results showing a small $1-2^{\circ}$ deviation from planarity.

Intramolecular distances

Bartell $(1960,1962)$ reported an intramolecular nonbonded $\mathrm{Cl} \cdots \mathrm{Cl}$ distance of $2.88 \AA$ for chlorine atoms attached to the same carbon atom. However, the average value observed for chlorine atoms attached to adjacent carbon atoms on an aromatic ring is $3 \cdot 14 \AA$ (Table 5). The intramolecular nonbonded contact distances in TCPA are presented in Table 4(a).

From the data in Table 5 , it is possible to differentiate between compounds containing two or more ortho carbon-chlorine bonds and those containing 'isolated' carbon-chlorine bonds. In the former case the average value is $1.709 \AA$, while in the latter it is $1.737 \AA$.* This leads to the important conclusion that, in the case of aromatic compounds, each of two adjacent carbonchlorine bonds is shorter than a single carbon-chlorine bond.

In any given molecule, local bonding conditions are likely to cause slight deviations from these values, while cases of severe molecular overcrowding can

* Palenik, Donohue \& Trueblood (1968) presented a table of aromatic $\mathrm{C}-\mathrm{Cl}$ bonds, although they did not make the distinction that is made here. With one exception, the data in their table are in agreement with the present conclusions.
result in gross changes in the $\mathrm{Cl} \cdots \mathrm{Cl}$ or $\mathrm{C}-\mathrm{Cl}$ distances and may even distort the molecule. Thus in 1:4:5:8tetrachloronaphthalene (Gafner \& Herbstein, 1962) and 5,6-dichloroacenaphthene (Avoyan \& Struchkov, 1961) the closely spaced, theoretically parallel carbonchlorine bonds cause molecular distortions and abnormal interatomic distances (Table 5). Less severe molecular overcrowding, such as is found in TCPA, results in small molecular distortions with normal interatomic distances.
Further indications of a significant difference between ortho carbon-chlorine bonds and single, meta-, or para-carbon-chlorine bonds are available from nuclear quadrupole resonance data. Bersohn (1954), in a discussion of the double-bond character of conjugated carbon-chlorine bonds, states that the decrease of double-bond character and consequent increase of the nuclear quadrupole coupling constant of a carbonchlorine bond upon the introduction of another chlorine atom in a resonating system is a small highorder effect. He does not distinguish between ortho, meta, and para substitution. However, if we use nuclear quadrupole resonance data as a measure of the double bond and/or ionic character of the bond, then an increase in the resonance frequency will indicate a decrease in the ionic character of the bond, an increase in the double-bond character and a shortening

Table 5. Average carbon-chlorine bond lengths and chlorine-chlorine non-bonded contact distances in several aromatic compounds.

Compound	$\mathrm{C}-\mathrm{Cl}$	$\mathrm{Cl} \cdots \mathrm{Cl}$	Reference
5,6-Dichloroacenaphthene	1.76 A	(3-12) \AA^{a}	Avoyan \& Struchkov (1961)
2,5-Dichloroaniline	1.744		Sakurai, Sundaralingam \& Jeffrey (1963)
1-(2,6-Dichlorobenzyl)-6-hydroxy-1,4,5,6-tetrahydronicotinamide	1.743		Hope (1969)
Ammonium chloranilate monohydrate	1.741		Krogh-Anderson (1967)
1:4:5:8-Tetrachloronaphthalene	1.740	$(2 \cdot 987)^{a}$	Gafner \& Herbstein (1962)
4-Acetyl-2'-chlorobiphenyl	1.738		Sutherland \& Hoy (1968)
o-Chlorobenzoic acid	1.737		Ferguson \& Sim (1961)
trans-p, p^{\prime}-Dichloroazobenzene	1.737		Hope \& Victor (1969)
4-4"-Dichlorodiphenylsulphone	1.736		Sime \& Abrahams (1960)
Tetrachlorohydroquinone (X-ray)	1.733	$3 \cdot 15$	Sakurai (1962a)
TMPD-Chloranii ${ }^{\text {b }}$	1.714	$3 \cdot 16$	de Boer \& Vos (1968)
Tetrachloro-p-benzoquinone	1.714	$3 \cdot 17$	Chu, Jeffrey \& Sakurai (1962)
Tetrachlorohydroquinone (neutron)	1.712	$3 \cdot 14$	Sikka \& Chidambaram (1967)
Pentachlorophenol	1.707	$3 \cdot 12$	Sukarai (1962b). Corrected in Sakurai et al. (1963)
TCPA	1.705	$3 \cdot 123$	This work
TCPC ${ }^{\text {c }}$	1.705	(3.35) ${ }^{\text {e }}$	Shimanouchi, Sasada, Ashida, Kakudo, Murata \& Kitahara (1969)
$\mathrm{TCBF}^{\text {d }}$	$1 \cdot 705$	(3.35) ${ }^{e}$	Nishi, Sasada, Ashida \& Kakudo (1966)
	Average	$3 \cdot 14$	

[^0]of the bond length. The data for a series of chlorinated benzene compounds (Table 2 in Bersohn, 1954) show that there is a small increase for the meta and para substituted dichlorobenzenes, and a significantly larger increase for o-dichlorobenzene.

The observed shortening of the $\mathrm{C}-\mathrm{Cl}$ bond can be due to an actual shortening of this bond because of halogen-halogen interactions as discussed by Coulson (1962) and by Bastiansen \& Traetteberg (1962), or it can be due to an induction effect (Morino et al., 1962). The comparison of accurate neutron and X-ray diffraction data would be of help in clarifying this point.

A (partial) search of the literature revealed only one suitable compound that had been studied by neutron diffraction. Sikka \& Chidambaram (1967) found that the $\mathrm{C}-\mathrm{Cl}$ bond lengths in tetrachlorohydroquinone (TCHQ) have an average bond length of 1.712 (8) \AA

Fig.2. Intramolecular bond distances in TCPA. The e.s.d.'s are $0.013 \AA$ for $\mathrm{C}-\mathrm{Cl} ; 0.016 \AA$ for $\mathrm{C}-\mathrm{C}$ (benzene); 2° for angles around $\mathrm{C}(7)$ and $\mathrm{C}(8)$; and $1 \cdot 2^{\circ}$ for other angles. The remainder of the e.s.d.'s are shown in parentheses. All values shown are not corrected for thermal vibration; the corrections are found in Table 4 (a).
and that all carbon-carbon bond lengths are within one e.s.d. of $1-390 \AA$. The X-ray diffraction investigation of this compound (Sakurai, 1962a) revealed a longer $\mathrm{C}-\mathrm{Cl}$ distance and a shorter $\mathrm{C}-\mathrm{C}$ distance. The neutron diffraction data place tetrachlorohydroquinone in the same category as TCPA and other polychlorinated aromatic compounds; there is no evidence of any difference between the various C-C bonds in TCHQ. On this basis, the observed $\mathrm{C}-\mathrm{Cl}$ bond lengths, which are within one e.s.d. of $1.709 \AA$, are in agreement with those observed for TCPA and related compounds. However, it is felt that these data are not sufficient to permit one to distinguish between actual shortening of the bond and apparent shortening due to electroncloud distortion. Neutron diffraction investigations of other polychlorinated compounds are needed.

Carbon-oxygen distances

Although the differences between chemically equivalent carbon-oxygen interatomic distances in TCPA [Fig. 2 and Table $4(a)]$ are only about three e.s.d.'s, they are larger than the differences found between other chemically equivalent bonds in this molecule. The possibility that the least-squares refinement had reached a false minimum was considered. Coordinates of $C(7)$ and $C(8)$ corresponding to equal and 'usual' carbon-oxygen interatomic distances were determined and refined using the least-squares procedure. After three cycles of refinement, the coordinates returned to their original values (Table 2). A function and error analysis showed that there are no significant differences between chemically equivalent bond lengths and angles in the TCPA light-atom skeleton.
The rather large discrepancies between the two pairs of $>\mathrm{C}=\mathrm{O}$ and $>\mathrm{C}-\mathrm{O}$ bonds in TCPA may be due to the fact that, even though two pairs of bonds are chemically equivalent, they are located in non-equivalent crystalline environments. The $\mathrm{O}(2)$ atom of a molecule in general position x, y, z is related to a second $O(2)$ atom across a center of symmetry at $\bar{x}, \bar{y}, \bar{z}$, while the $\mathrm{O}(3)$ atom of this molecule is directed at the five-membered ring of a molecule at $\frac{1}{2}-x, \frac{1}{2}+y$,

Fig. 3. Stereo pair of the TCPA molecule.
$\frac{1}{2}-z$. These different environments will result in different thermal and vibrational modes which may give rise to the observed differences in bond lengths. A similar effect was noted by Boeyens \& Herbstein (1965) in the perylene complex of pyromellitic dianhydride, in which $>\mathrm{C}=\mathrm{O}$ bond lengths of 1.230 and $1 \cdot 178 \AA$ (after thermal corrections) were determined. However, in a structure determination of the pyrenepyromellitic dianhydride complex at $110^{\circ} \mathrm{K}$, a value of ${ }_{1} \cdot 193 \AA$ with an e.s.d. of $0.006 \AA$ was determined for all four crystallographically non-equivalent $>\mathrm{C}=\mathrm{O}$ bonds (Herbstein \& Snyman, 1969). Quite clearly the effects due to molecular motions of atoms in anisotropic environments were removed at low temperatures.

A comparison of $\mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ (non-benzene) bond lengths in TCPA and related molecules is found in Table 6. The chlorine-oxygen intramolecular distances are discussed in the following section.

A stereo view of the molecule is presented in Fig. 3.

Crystal structure

The molecules pack together in interpenetrating and parallel rows, with each molecular plane lying along the row-axis. One row is formed by molecules related to each other by a center of symmetry, while parallel rows in adjacent unit cells are related by a translation vector. Molecules related to the x, y, z positions by $\frac{1}{2}+x$,
$\frac{1}{2}-y, \frac{1}{2}+z$ form a similar set of parallel rows which lie at an angle of $106.7(2.0)^{\circ}$ to the first set. This is shown in the stereo packing diagram found in Fig. 4. This packing diagram was drawn perpendicular to the molecular plane of TCPA; for purposes of identification, $\mathrm{Cl}(1)$ is marked with an asterisk in each molecule shown.

Some of the more interesting intermolecular interatomic distances are listed in Table 4(b). All distances of closest approach are within a few e.s.d.'s of the sum of the van der Waals radii (Bondi, 1964). Bondi has emphasized the distinction between the van der Waals radius of a singly-bonded oxygen atom ($1.5 \AA$), doubly-bonded oxygen atom in the direction parallel to the double bond ($1 \cdot 4 \AA$) and doubly-bonded oxygen atom in the direction perpendicular to the double bond ($1.6 \AA$). Using Bondi's van der Waals radius of $1.70 \AA$ for chlorine we would expect a chlorine to oxygen distance of $3.3 \AA$ perpendicular to the carbonyl double bond and $3.1 \AA$ parallel to it.
In TCPA we find a verification of these predicted trends. The intramolecular chlorine-oxygen contact is nearly perpendicular to the double bond of oxygen and the observed interatomic distance is $3 \cdot 18 \AA$ [Table $4(a)]$. On the other hand, the intermolecular contact direction of these two atoms, across a center of symmetry, is nearly parallel to the double bond [the $\mathrm{C}(8)-\mathrm{O}(2) \cdots \mathrm{Cl}(1)$ angle is 157°] and the interatomic

Table 6. Carbon-oxygen and (nonbenzene) carbon-carbon average bond distances (\AA) in TCPA and related molecules

Molecule	$\mathrm{C}=\mathrm{O}$	$\mathrm{C}-\mathrm{O}$	$\mathrm{C}-\mathrm{C}$	Reference
TCPA	1.202	1.402	1.500	This wotk
Phthalidimide	1.215	-	1.482	a
Maleic anhydride	1.195	1.402	1.481	b
Pyromellitic dianhydride	1.204	1.393	1.465	c
Pyromellitic dianhydride $\left(110^{\circ} \mathrm{K}\right)$	1.193	1.396	1.485	d

$a \quad$ Post (1969).
b Marsh, Ubell \& Wilcox (1962), corrected for thermal motion in reference c.
c Boeyens \& Herbstein (1965) in perylene-PMDA complex.
d Herbstein \& Snyman (1969) in pyrene-PMDA complex.

Fig.4. Stereo pair of the crystal packing in TCPA. The view is perpendicular to the plane of the molecule in position x, y, z. One unit-cell, showing $+\mathbf{A},+\mathbf{B},+\mathbf{C}$ directions, is outlined. For purposes of identification, each $\mathrm{Cl}(1)$ atom is marked with an asterisk.
distance is $3 \cdot 10 \AA$ [Table $4(b)]$. Similarly, the distances between $\mathrm{O}(3)$ of a molecule in position x, y, z and $\mathrm{C}(7)$ and $\mathrm{C}(6)$ of a molecule in position $\frac{1}{2}-x, \frac{1}{2}+y$, $\frac{1}{2}-z$, average $3.01 \AA$.

Conclusions

It is concluded that the TCPA molecule contains chlorine and oxygen atoms that are distorted from the molecular plane in a puckered arrangement. All intraand intermolecular bond lengths and contact distances are 'normal' if localized environmental and bonding effects are taken into consideration. The molecules in the crystal are independent of each other.
The interesting effect of a shortened $\mathrm{C}-\mathrm{Cl}$ bond length in the presence of two ortho carbon-chlorine bonds has been noted and discussed.
Finally, the point is stressed that if the usual Pauling (1961) values of the van der Waals radii were used, with no distinction being made with respect to the direction of bonding and contact, different conclusions would have been reached concerning the interatomic interactions, particularly in the case of $\mathrm{Cl}(1) \cdots \mathrm{O}(2)$. In general, one must be careful that any conclusions based on a discussion of van der Waals or nonbonding radii take into account the many factors that contribute to the van der Waals radius. The electron cloud surrounding each atom is subject to distortion from a variety of forces and very often this leads to an anisotropic van der Waals radius. This important fact is often overlooked in discussions of molecular structure and packing.

Note added in proof: In agreement with the conclusions of this paper, the average carbon-chlorine distance in 1,2,3,4-tetrachloro-5,7-diphenylcalicene has recently been reported as $1.709 \AA$ by Kennard, Kerr, Watson \& Fawcett (1970).

The author thanks Al Bednowitz for helpful discussions concerning the use of his program SORTE. Ben Post graciously made available data on phthalidimide prior to publication.
Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, to the Research Corporation, and to the U.S. Atomic Energy Commission for partial support of this research.

References

Avoyan, G. L. \& Struchiov, J. T. (1961). J. Struct. Chem. (USSR), 2, 662.
Bartell, L. S. (1960). J. Chem. Phys. 32, 827.
Bartell, L. S. (1962). Tetrahedron, 17, 177, 261.
Bastiansen, O. \& Hassel, O. (1947). Acta Chem. Scand. 1, 489.

Bastiansen, O. \& Traetteberg, M. (1962). Tetrahedron, 17, 147, 257.
Bersohn, R. (1954). J. Chem. Phys. 22, 2078.
Boer, J. L. de \& Vos, A. (1968). Acta Cryst. B24, 720.

Boeyens, J. \& Herbstein, F. H. (1965). J. Phys. Chem. 69, 2160.

Bondi, A. (1964). J. Phys. Chem. 68, 441.
Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142.
Buu-Hoi, N. \& Jacquignon, P. (1957). Bull. Soc. chim. Fr. p. 488.

Chowdhury, M. (1961). J. Phys. Chem. 65, 1899.
Chowdhury, M. \& Basu, S. (1960). Trans. Faraday Soc. 56, 335.
Chu, S., Jeffrey, G. A. \& Sakurai, T. (1962). Acta Cryst. 15, 661.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71.

Coulson, C. A. (1962). Tetrahedron, 17, 256, 260.
Coulson, C. A. \& Stocker, D. (1959). Mol. Phys. 2, 397.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Czekalla, J. \& Meyer, K.-O. (1961). Z. Phys. Chem. 27, 185.

Daševskij, V. G., Avoyan, R. J. \& Davydova, M. A. (1966). Acta Cryst. 21, A 109.

Dean, C., Richardson, C. \& Sakurai, T. (1961). Mol. Phys. 4, 95.
Donnay, J. D. H. \& Donnay, G. (1963). Crystal Data. American Crystallographic Association Monograph No. 5.
Ferguson, G. \& Sim, G. A. (1961). Acta Cryst. 14, 1262.
Gafner, G. \& Herbstein, F. H. (1962). Acta Cryst. 15, 1081.

Herbstein, F. H. \& Snyman, J. A. (1969). Phil. Trans. Roy. Soc. (London), 264A, 635.
Hope, H. (1969). Acta Cryst. B25, 78.
Hope, H. \& Victor, D. (1969). Acta Cryst. B25, 1849.
Karle, I. L. \& Karle, J. (1966). Acta Cryst. 21, 849.
Kennard, O., Kerr, K. A., Watson, D. G. \& Fawcett, J, K. (1970). Proc. Roy. Soc. A 316, 551.

Krogh-Anderson, E. (1967). Acta Cryst. 22, 196.
Marsh, R. E., Ubell, E. \& Wilcox, H. E. (1962). Acta Cryst. 15, 35.
McCrone, W. C. (1951). Analyt. Chem. 23, 1339.
Morino, Y., Toyama, M., Itoh, K. \& Kyono, S. (1962). Bull. Chem. Soc. Japan, 35, 1667.
Nishi, Y., Sasada, Y., Ashida, T. \& Kakudo, M. (1966). Bull. Chem. Soc. Japan, 39, 818.
Okaya, Y. \& Bednowitz, A. L. (1967). Acta Cryst. 22, 111.
Palenik, G. J., Donohue, J. \& Trueblood, K. N. (1968). Acta Cryst. B24, 1139.
Pauling, L. (1961). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Post, B. (1969). Personal communication.
Sakurai, T. (1962a). Acta Cryst. 15, 443.
Sakurai, T. (1962b). Acta Cryst. 15, 1164.
Sakurai, T., Sundaralingam, M. \& Jeffrey, G. A. (1963). Acta Cryst. 16, 354.
Shimanouchi, H., Sasada, Y., Ashida, T., Kakudo, M., Murata, I. \& Kitahara, Y. (1969). Acta Cryst. B25, 1890.

Short, G. D. (1968). Chem. Comm. p. 1500.
Sikka, S. K. \& Chidambaram, R. (1967). Acta Cryst. 23, 107.

Sime, J. G. \& Abrahams, S. C. (1960). Acta Cryst. 13, 1.
Strel'cova, I. N. \& Struchkov, J. T. (1961). J. Struct. Chem. (USSR), 2, 296.
Sutherland, H. H. \& Hoy, T. G. (1968). Acta Cryst. B24, 1207.

Zachariasen, W. H. (1968). Acta Cryst. 23, 558.

[^0]: ${ }^{a}$ Not attached to adjacent carbon atoms, not included in average.
 ${ }^{b} N, N, N^{\prime}, N^{\prime}$-Tetramethyl- p-diaminobenzene-chloranil.
 c 1,2,3,4-Tetrachloro-5,6-di-n-propyl calicene.
 ${ }^{d}$ 1,2,3,4-Tetrachlorobenzo[g]sesquifulvalene. Five-membered ring, not included in average.

